If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+23=14x
We move all terms to the left:
x^2+23-(14x)=0
a = 1; b = -14; c = +23;
Δ = b2-4ac
Δ = -142-4·1·23
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{26}}{2*1}=\frac{14-2\sqrt{26}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{26}}{2*1}=\frac{14+2\sqrt{26}}{2} $
| 89x+0=113 | | -10+9j-8=9(2j+8) | | 711=q+41 | | -10+9j-8=9(2j+8 | | 175m-75m+57,900=60,300-200m | | -14.4=0.6x | | 3b+2b-8=28 | | 220=144-u | | 4^(x-4)=2^(x+3) | | 2(q+1)-4=6 | | 34=2(w-4)+2w | | 89x=113 | | 3+a+4a=27 | | 562=72,5x+3= | | —32=8d | | -6(x+4)+1=x+5 | | 35-7×=-7(x-5) | | d/2-8=12 | | 1/3(x-4)-x=3(5-x) | | 6x+18=4x-16 | | 2(12x-10)=30 | | 3(z+2.85)-4=2.27 | | 3(21+x)=96 | | 23=6r+5+3r | | 3(2x-3)=19-2(5-3x)+9x | | 5/4(a-3)=7 | | x+1+x-4=180 | | 2(d-2.72)+1.8=8 | | 2t-5t+4=19 | | -6x-16=x+29 | | 14=3(z-13)-4 | | w–3.2=5.6w= |